Part Number Hot Search : 
CJF102 REB334 MMBZ5252 NJM2133D UDA1325 AM1408N7 W1T1G NCD32F1
Product Description
Full Text Search
 

To Download LM358A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
LM158,A-LM258,A LM358,A
LOW POWER DUAL OPERATIONAL AMPLIFIERS
.I .LARGE .WI .VERY .LOW .LOW .LOW .I .DI .LARGE
NTERNALLY FREQUENCY COMPENSATED DC VOLTAGE GAIN : 100dB DE BANDWIDTH (unity gain) : 1.1MHz (temperature compensated) LOW SUPPLY CURRENT/OP (500A) ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE INPUT BIAS CURRENT : 20nA (temperature compensated) INPUT OFFSET VOLTAGE : 2mV INPUT OFFSET CURRENT : 2nA NPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND FFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE OUTPUT VOLTAGE SWING 0V TO (VCC - 1.5V)
N DIP8 (Plastic Package)
D SO8 (Plastic Micropackage)
P TSSOP8 (Thin Shrink Small Outline Package)
ORDER CODES
Part Number LM158,A Temperature Range -55oC, +125oC -40oC, +105oC 0 C, +70 C
o o
Package N * * * D * * * P * * *
DESCRIPTION These circuits consist of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard + 5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
June 1998
LM258,A LM358,A
Example : LM258N
PIN CONNECTIONS (top view)
1 2 3 4 + +
8 7 6 5
1 - Output 1 2 - Inverting input 1 3 - Non-inverting input 1 4 - VCC-
5 - Non-inverting input 2 6 - Inverting input 2 7 - Ouput 2 8 - VCC+ 1/12
LM158,A - LM258,A - LM358,A
SCHEMATIC DIAGRAM (1/2 LM158)
V CC
6A
4A CC
100A
Q5 Q6
Inverting input
Q2 Q1
Q3 Q4 Q11 Output Q13 Q10 Q12 Q7 R SC
Non-inverting input
Q8
Q9 50A GND
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Iin Toper Tstg Supply Voltage Input Voltage Differential Input Voltage Output Short-circuit Duration - (note 2) Power Dissipation Input Current - (note 1) Operating Free-air Temperature Range Storage Temperature Range 500 50 -55 to +125 -65 to +150 Parameter LM158,A +32 -0.3 to +32 +32 LM258,A +32 -0.3 to +32 +32 Infinite 500 50 -40 to +105 -65 to +150 500 50 0 to +70 -65 to +150 mW mA
o o
LM358,A +32 -0.3 to +32 +32
Unit V V V
C C
2/12
LM158,A - LM258,A - LM358,A
ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = Ground, VO = 1.4V, Tamb = 25oC (unless otherwise specified)
Symbol Vio Parameter Input Offset Voltage - (note 3) Tamb = 25oC Tmin. Tamb Tmax. Iio Iib Avd LM158, LM258 LM158A LM158, LM258 Input Offset Current o Tamb = 25 C Tmin. Tamb Tmax. Input Bias Current - (note 4) o Tamb = 25 C Tmin. Tamb Tmax. Large Signal Voltage Gain (VCC = +15V, RL = 2k, VO = 1.4V to 11.4V) Tamb = 25oC Tmin. Tamb Tmax. Supply Voltage Rejection Ratio (RS = 10k) + (VCC = 5 to 30V) Tamb = 25oC Tmin. Tamb Tmax. Supply Current, all Amp, no Load VCC = +5V, Tmin. Tamb Tmax. VCC = +30V, Tmin. Tamb Tmax. Input Common Mode Voltage Range (VCC = +30V) - (note 6) o Tamb = 25 C Tmin. Tamb Tmax. Common-mode Rejection Ratio (RS = 10k) o Tamb = 25 C Tmin. Tamb Tmax. Output Current Source (VCC = +15V, Vo = 2V, Vid = +1V) Output Current Sink (Vid = -1V) VCC = +15V, VO = 2V VCC = +15V, VO = +0.2V Output Voltage Swing (RL = 2k) Tamb = 25oC Tmin. Tamb Tmax. High Level Output Voltage (VCC+ = 30V) Tamb = 25oC RL = 2k Tmin. Tamb Tmax. o RL = 10k Tamb = 25 C Tmin. Tamb Tmax. Low Level Output Voltage (RL = 10k) Tamb = 25oC Tmin. Tamb Tmax. Slew Rate (VCC = 15V, VI = 0.5 to 3V, RL = 2k, CL = 100pF, unity gain) Gain Bandwidth Product (VCC = 30V, f = 100kHz, Vin = 10mV, RL = 2k, CL = 100pF) Total Harmonic Distortion (f = 1kHz, Av = 20dB, RL = 2k, VCC = 30V, CL = 100pF, VO = 2 PP) Equivalent Input Noise voltage (f = 1kHz, Rs = 100, VCC = 30V) 2 10 30 50 100 2 LM158A-LM258A LM358A Min. Typ. Max. 1 3 2 4 LM158-LM258 LM358 Min. Typ. Max. 2 7 5 9 7 nA 30 40 nA 20 20 150 200 V/mV 50 25 100 50 25 100 dB 65 65 100 65 65 1.2 2
+ VCC -1.5 VCC+-2
Unit mV
SVR
100 mA
ICC Vicm
0.7
0.7
1.2 2 V
+ VCC -1.5 VCC+-2
0 0 70 60 20 10 12 0 0 26 26 27 27 27 28 85
0 0 70 60 85
CMR
dB
Isource Isink VOPP VOH
mA 40 20 50 VCC+-1.5 + VCC -2 60 20 10 12 0 0 26 26 27 27 20 20 0.3 27 28 mV 5 5 20 20 V/s 0.3 0.6 0.6 MHz 0.7 1.1 0.02 0.7 1.1 % 0.02 nV Hz 40 20 50 VCC+-1.5 + VCC -2 60 mA A V
V
VOL SR GBP
THD
en
55
55
3/12
LM158,A - LM258,A - LM358,A
ELECTRICAL CHARACTERISTICS (continued)
Symbol DVio DIio VO1/VO2
Notes :
Parameter Min. Input Offset Voltage Drift Input Offset Current Drift Channel Separation (note 5) 1kHz f 20kHz
LM158A LM258A LM358A Typ. 7 10 120
Max. 15 200
Min.
LM158 LM258 LM358 Typ. 7 10 120
Unit Max. 30 300 V/oC pA/oC dB
1. This input current only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 2. Short-circuits from the output to VCC can cause excessive heating if V CC + > 15V. The maximum output current is approximatively 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. 3. VO = 1.4V, RS = 0, 5V < V CC + < 30V, 0 < Vic < VCC+ - 1.5V. 4. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. 6. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V CC + - 1.5V. But either or both inputs can go to +32V without damage.
OPEN LOOP FREQUENCY RESPONSE (NOTE 3)
140 120
0.1m F VI VCC/2 + +125C 10M W
LARGE SIGNAL FREQUENCY RESPONSE
20
100k W 1k W
OUTPUT SWING (Vpp)
VOLTAGE GAIN (dB)
100 80 60 40 20 0
VCC
-
+15V VO 2k W
VO
15
VI +7V +
VCC = 30V & -55C Tamb
10
5 0
VCC = +10 to + 15V & -55C Tamb +125C 1.0 10 100 1k 10k 100k 1M 10M
1k
10k
100k
1M
FREQUENCY (Hz) VOLAGE FOLLOWER PULSE RESPONSE
4
FREQUENCY (Hz) OUTPUT CHARACTERISTICS
10 VCC = +5V VCC = +15V VCC = +30V
OUTPUT VOLTAGE (V)
2 1 0
OUTPUT VOLTAGE (V)
3
RL 2 k W VCC = +15V
1
v cc IO + VO
v cc /2
INPUT VOLTAGE (V)
3 2 1
0 10 20 30 40
0.1
0.01
0,001 0,01 0,1
Tamb = +25C 1 10 100
TIME (m s)
OUTPUT SINK CURRENT (mA)
4/12
LM158,A - LM258,A - LM358,A
VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL)
500
OUTPUT VOLTAGE REFERENCED
OUTPUT CHARACTERISTICS
8 7 6
V CC /2 + IO VO V CC
OUTPUT VOLTAGE (mV)
450
el
+ eO 50pF
TO VCC+ (V)
400 Input 350 Output 300 250
0 1 2 3 4
5 4 3 2 1
0,001 0,01
-
Independent of V CC T amb = +25C
Tamb = +25C VCC = 30 V
5 6 7 8
0,1
1
10
100
TIME (m s) INPUT CURRENT (Note 1)
90
90
OUTPUT SOURCE CURRENT (mA) CURRENT LIMITING (Note 1)
OUTPUT CURRENT (mA)
80 70 60 50 40 30 20 10 0
+ -
80
INPUT CURRENT (mA)
VI = 0 V VCC = +30 V VCC = +15 V
IO
70 60 50 40 30 20 10 0
-55 -35 -15
VCC = +5 V
5
25
45
65
85 105
125
-55 -35
-15
5
25
45
65
85 105
125
TEMPERATURE (C) INPUT VOLTAGE RANGE
15 4
TEMPERATURE (C) SUPPLY CURRENT
VCC
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
3
mA -
ID
10
Negative
2
+
5
Positive
1
Tamb = 0C to +125C
Tamb = -55C
0 5 10 15 0 10 20 30
POWER SUPPLY VOLTAGE (V)
POSITIVE SUPPLY VOLTAGE (V)
5/12
LM158,A - LM258,A - LM358,A
160 120 80 40 R L = 2k W
100 INPUT CURRENT (nA)
R L = 20k W
VOLTAGE GAIN (dB)
75 50 25
Tamb= +25C
0
10
20
30
40
POSITIVE SUPPLY VOLTAGE (V)
GAIN BANDWIDTH PRODUCT (MHz)
0 10 20 30 POSITIVE SUPPLY VOLTAGE (V)
1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 VCC = 15V
160
VOLTAGE GAIN (dB)
R L = 20k W 120 80 40 R L = 2k W
0
10
20
30
0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C)
POSITIVE SUPPLY VOLTAGE (V)
POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB)
115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C)
115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (C)
6/12
LM158,A - LM258,A - LM358,A
TYPICAL APPLICATIONS (single supply voltage) VCC = +5V DC AC COUPLED INVERTING AMPLIFIER AC COUPLED NON-INVERTING AMPLIFIER
Rf 100k CI
AV= -
Rf R1
C1 0.1F
R1 100k
R2 1M
R1 10k
1/2 LM158
(as shown A V = -10)
Co 0 eo
AV = 1 + R2 R1 (as shown A V = 11)
Co 0 eo
2VPP
CI
1/2 LM158
2VPP
eI ~ VCC
R2 100k
RB 6.2k R3 100k
RL 10k
eI ~ R3 1M
RB 6.2k
R4 100k
RL 10k
VCC
C1 10F
C2 10F R5 100k
NON-INVERTING DC AMPLIFIER
DC SUMMING AMPLIFIER
e1
100k
10k 1/2 LM158
eO
AV = 1 + R2 R1 (As shown A V = 101) +5V
100k e2 100k 100k
1/2 LM158
eO
R1 10k
R2 1M
e O (V)
e3
100k
0 e I (mV)
e4
100k
eo = e1 + e2 - e3 - e4 where (e1 + e2) (e3 + e4) to keep eo 0V
7/12
LM158,A - LM258,A - LM358,A
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT
I eI
R2 100k
R1 100k 1/2 LM158 +V1 +V2 R4 100k
I
1/2 I B LM158 2N 929 0.001 F
eo
IB
R3 100k
1/2 LM158
IB
Vo
IB 3M 1/2 LM158
if R1 = R5 and R3 = R4 = R6 = R7 2R1 eo = [ 1+ ] (e2 - e1)
1.5M
IB
Input current compensation
R2
As shown eo = 101 (e2 - e1).
HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER
LOW DRIFT PEAK DETECTOR
R1 100k R3 100k R4 100k
eI
IB 1/2 I B LM158 C 1F 2IB Zo eo
e1
1/2 LM158
1/2 LM158
eO
R2 2k
Gain adjust
1/2 LM158
ZI
2IB
R5 100k R6 100k R7 100k
2N 929
0.001 F IB 3R 3M 1/2 LM158 Input current compensation
1/2 LM158
e2
R 1M
IB
if R1 = R5 and R3 = R4 = R6 = R7 2R1 eo = [ 1+ ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
8/12
LM158,A - LM258,A - LM358,A
ACTIVE BAND-PASS FILTER
R1 100k C1 330pF R5 470k 1/2 LM158 R6 470k R7 100k
R2 100k
+V1
1/2 LM158 R4 10M C2 330pF 1/2 LM158 R8 100k
R3 100k
Vo
VCC
C3 10F
Fo = 1kHz Q = 50 AV = 100 (40dB)
9/12
LM158,A - LM258,A - LM358,A
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP
Dim. A a1 B b b1 D E e e3 e4 F i L Z
Millimeters Min. 0.51 1.15 0.356 0.204 7.95 2.54 7.62 7.62 6.6 5.08 3.18 3.81 1.52 0.125 1.65 0.55 0.304 10.92 9.75 0.313 Typ. 3.32 0.020 0.045 0.014 0.008 Max. Min.
Inches Typ. 0.131 0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.060
DIP8.TBL
Max.
0.150
10/12
PM-DIP8.EPS
LM158,A - LM258,A - LM358,A
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
Dim. A a1 a2 a3 b b1 C c1 D E e e3 F L M S
Min. 0.1 0.65 0.35 0.19 0.25 4.8 5.8
Millimeters Typ.
Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45o (typ.) 5.0 6.2
Min. 0.004 0.026 0.014 0.007 0.010 0.189 0.228
Inches Typ.
Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244
1.27 3.81 3.8 0.4 4.0 1.27 0.6 8o (max.) 0.150 0.016
0.050 0.150 0.157 0.050 0.024
11/12
SO8.TBL
PM-SO8.EPS
LM158,A - LM258,A - LM358,A
PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE
Dim. A A1 A2 b c D E E1 e k l
Millimeters Min. 0.05 0.80 0.19 0.09 2.90 4.30 0
o
Inches Max. 1.20 0.15 0.01 0.031 0.007 0.003 0.114 0.169 0o 0.09 0.0236 0.118 0.252 4.50 8o 0.173 0.025 8o 0.030 0.75 0.177 0.039 Min. Typ. Max. 0.05 0.006 0.041 0.15 0.012 0.122
Typ.
1.00
1.05 0.30 0.20
3.00 6.40 4.40 0.65
3.10
0.50
0.60
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. (c) The ST logo is a trademark of STMicroelectronics (c) 1998 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
ORDER CODE :
12/12


▲Up To Search▲   

 
Price & Availability of LM358A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X